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ABSTRACT
Modern online service providers such as online shopping platforms
often provide both search and recommendation (S&R) services to
meet different user needs. Rarely has there been any effective means
of incorporating user behavior data from both S&R services. Most
existing approaches either simply treat S&R behaviors separately,
or jointly optimize them by aggregating data from both services,
ignoring the fact that user intents in S&R can be distinctively differ-
ent. In our paper, we propose a Search-Enhanced framework for the
Sequential Recommendation (SESRec) that leverages users’ search
interests for recommendation, by disentangling similar and dissimi-
lar representations within S&R behaviors. Specifically, SESRec first
aligns query and item embeddings based on users’ query-item inter-
actions for the computations of their similarities. Two transformer
encoders are used to learn the contextual representations of S&R
behaviors independently. Then a contrastive learning task is de-
signed to supervise the disentanglement of similar and dissimilar
representations from behavior sequences of S&R. Finally, we extract
user interests by the attention mechanism from three perspectives,
i.e., the contextual representations, the two separated behaviors
containing similar and dissimilar interests. Extensive experiments
on both industrial and public datasets demonstrate that SESRec
consistently outperforms state-of-the-art models. Empirical studies
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further validate that SESRec successfully disentangle similar and
dissimilar user interests from their S&R behaviors.
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1 INTRODUCTION
Recommender systems and search engines have been widely de-
ployed in online platforms to help users alleviate information over-
load. Currently, with the vast increase of data on the Internet, solely
using one of the recommender systems or the search engines cannot
meet users’ information needs. Hence, many social media platforms,
e.g., YouTube and TikTok, provide both search and recommendation
(S&R) services for users to obtain information. As users express
their diverse interests in both scenarios, it is feasible to enhance
the recommendation system by jointly modeling the behaviors of
both, and the core challenge is how to effectively leverage users’
search interests for capturing accurate recommendation interests1.

Early studies [28, 29] have demonstrated that jointly optimiz-
ing the S&R models benefits both performances. Recently, sev-
eral works [5, 17, 24, 27, 31] have been proposed to boost the
1In this paper, we use recommendation interests to refer to user interests captured
by the recommendation system, and search interests to refer to users’ interests
revealed in their search history.
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recommendation using search data. As such, devising a search-
enhanced framework is a promising research area in the recom-
mendation field. Due to that recommendation with search data is
still a nascent research area in both academia and industry, recent
works [5, 24, 27, 31] usually only incorporate users’ S&R behaviors
by feeding them into one encoder to mine users’ interests.

Despite their effectiveness, most previous works ignore the dif-
ferences between users’ interests in S&R behaviors by modeling
them without considering their correlations. However, in real-world
applications, search behaviors may strengthen or be complemen-
tary to the interests revealed in the recommendation behaviors. For
example, Figure 1(a) illustrates partial behavior histories of a user
in the short-video scenario. While users browsing the items/video
suggested by the recommendation system, they may spontaneously
start searching by typing queries, which usually differ from the
video content in the recommendation feed. We refer to such case
as spontaneous search. In contrast, users may also start searching
by clicking on the suggested query that is related to the current
item/video being played, which we denote as passive search. To
verify the universality of this phenomenon, we conducted data
analysis from the real-world data collected from the Kuaishou2

app, shown in Figure 1(b). The data analysis is based on behaviors
of millions of users. For each search behavior, if the categories of
the items exist in the set of categories of the items interacted by
this user in the past seven days, this search behavior is similar to
recent recommendation behaviors, and otherwise dissimilar. The
similar search behaviors reflect users’ strong interests overlapped
in the recommendation behaviors and should be strengthened. The
dissimilar behaviors may be undiscovered interests, which are prob-
ably newly emerging and unfulfilled in the recommendation feed.
As a result, it is critical to disentangle the similar and dissimilar
representations between S&R behaviors.

To address such a problem, we devise a search-enhanced frame-
work for sequential recommendation, namely SESRec, to learn the
disentangled search representation for the recommendation. In de-
tails, in order to disentangle the similar and dissimilar interests
between two behaviors, we propose to decompose each history
sequence into two sub-sequences that respectively represent the
similar and dissimilar interests so that we can extract user inter-
ests from multiple aspects. To learn the similarity between two
behaviors, we first align query-item embeddings with an InfoNCE
loss based on users’ query-item interactions. Then two separate
encoders are utilized to model S&R behaviors and generate their
contextual representations. Due to the lack of the labels denoting
the similarity of interests between the obtained contextual represen-
tations, we propose to leverage self-supervision to guide learning
the similar and dissimilar interests. Specifically, we exploit the
co-attention mechanism to learn the correlation between S&R’s
contextual representations. Based on the co-attention score, for
both of the contextual representations, we not only aggregate them
to generate anchors which are considered to maintain the shared
interests of S&R, but also partition them into two sub-sequences,
which are considered to represent the similar and dissimilar be-
haviors between S&R (respectively referred to as the positives and
the negatives). Then following contrastive learning, we define a

2https://www.kuaishou.com/en
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Figure 1: S&R behaviors in the short-video scenario. (a) Af-
ter watching a video about dogs, the user chooses to click
on the suggested query (passive search) to explore more.
Later, after watching a food video, the user searches “world
cup 2022”, a spontaneous search unrelated to the watched
video. (b) Statistics of search behaviors collected from the
Kuaishou app. 57% of the search behaviors are spontaneous
and 43% are passive. 23% of the spontaneous searches have
dissimilar interests to the recommendation interests.

triplet loss to push the anchors closer to the positives than the neg-
atives. Finally, we employ the attention mechanism to extract user
interests from three aspects, i.e., the contextual representations,
the positives, and the negatives of S&R. In this way, the disentan-
gled interests of S&R behaviors enhance the prediction for the next
interaction.

The contributions of this paper are summarized as follows:
• To the best of our knowledge, it is the first time that users’ S&R
interests are jointly considered and disentangled into similar and
dissimilar representations for user modeling. We pioneer the prac-
tice of learning disentangled search representations for the recom-
mendation.
• We propose a search-enhanced framework for the sequential
recommendation. By jointly considering users’ S&R behaviors, we
extract users’ interests from multiple aspects by decomposing both
S&R behaviors into two parts based on their co-attention scores:
one for behaviors containing similar interests and the other for
behaviors containing dissimilar interests. Moreover, we also utilize
self-supervised learning to guide the decomposition.
• We conduct extensive experiments on two datasets. The experi-
mental results validate the effectiveness of our proposed SESRec.
In particular, SESRec outperforms traditional sequential models
which do not leverage search data, as well as other search-aware
models, which neglect the correlation between users’ interests in
S&R behaviors.

https://www.kuaishou.com/en
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2 RELATED WORK

Recommendation with Search Data. In both academia and in-
dustry, research that enhances recommendation using search data
is relatively rare. Only a few works involve in this area. Zamani and
Croft [28, 29] assume that S&R models could potentially benefit
from each other by jointly training with both S&R data. Yao et al.
[27] design an approach called USER that mines user interests from
the integrated user behavior sequences and accomplishes these
two tasks in a unified way. NRHUB [24] exploits heterogeneous
user behaviors, i.e., webpage browsing and search queries, to en-
hance the recommendation model. IV4REC [17] and IV4REC+ [18]
leverages search queries as instrumental variables to reconstruct
user and item embeddings and boost recommendation performance
in a causal learning manner. Query-SeqRec [5] is a query-aware
model, which incorporates issued queries and browsing items to
capture users’ interests and intents. SRJGraph [31] is a GNN-based
method which incorporates queries into user-item interaction edges
as attributes. In this work, we also develop a framework to learn
disentangled search representation for recommendation.

Sequential Recommendation. Sequential recommendation meth-
ods mine user interests by modeling sequential relationships of user
behaviors. An early work [6] first utilizes the GRU mechanism to
model user preferences. And attention mechanisms are introduced
to capture sequential patterns, such as STAMP [12]. There are
works using CNN architectures, e.g., Caser [20] treats the historical
item sequence as an “image” and adopts a CNN for user model-
ing. For other neural network architectures, several models employ
GNN [2, 26] which construct a graph for historical sequences. Cur-
rently, lots of models leverage the transformer architecture, e.g.,
SASRec [8] and BERT4Rec [19]. Several works [33, 34] devise an
attention mechanism to adaptively learn user interests from behav-
iors. FMLP-Rec [36] is a state-of-the-art that leverages an all-MLP
architecture with learnable filters for sequential recommendation.
Unlike these works, this work incorporates users’ search activities
into the sequential recommendation task.

Contrastive Learning for Recommendation. With the success-
ful development of contrastive learning, this technique has been
widely adopted in recommendation [7, 13, 32, 35]. As for sequen-
tial recommendation, Zhou et al. [35] first devise auxiliary self-
supervised objectives to enhance data representations via pre-training
methods. Ma et al. [13] propose a sequence-to-sequence training
strategy by performing self-supervised learning in the latent space.
Recently, several works [30, 32] are proposed for learning users’ di-
verse interests. For example, Zhang et al. [30] propose a contrastive
learning framework to disentangle long and short-term interests for
recommendation with self-supervision. In this work, we propose
to disentangle the similar and dissimilar interests between S&R
behaviors with self-supervision signals.

3 PROBLEM FORMULATION
Assume that the sets of users, items, and queries are denoted by U,
I, and Q respectively, where 𝑢 ∈ U denotes a user, 𝑖 ∈ I denotes
an item, and 𝑞 ∈ Q denotes a query. For the recommendation
history, a user 𝑢 has a context of chronologically ordered item
interactions: 𝑆𝑢𝑖 = [𝑖1, 𝑖2, . . . , 𝑖𝑇𝑟 ], where 𝑆𝑢𝑖 is 𝑢’s interacted item

sequence, 𝑇𝑟 is the number of items that user 𝑢 has interacted till
timestamp 𝑡 , and 𝑖𝑘 is the𝑘-th interacted item. For the search history,
a user 𝑢 has a context of chronologically ordered issued queries:
𝑆𝑢𝑞 = [𝑞1, 𝑞2, . . . , 𝑞𝑇𝑠 ], where 𝑆𝑢𝑞 is 𝑢’s issued query sequence, 𝑇𝑠 is
the number of queries issued before 𝑡 , and 𝑞𝑘 is the 𝑘-th issued
query. When using the search service, user 𝑢 also clicks items after
issuing queries: 𝑆𝑢𝑐 =

[
𝑖
(1)
𝑞1 , 𝑖

(2)
𝑞1 , 𝑖

(1)
𝑞2 , . . . , 𝑖

(1)
𝑇𝑠

, 𝑖
(2)
𝑇𝑠

, 𝑖
(3)
𝑇𝑠

]
, where 𝑆𝑢𝑐 is

the 𝑢’s clicked item sequence corresponding to 𝑆𝑢𝑞 , and 𝑖
( 𝑗)
𝑞𝑘 is the

𝑗-th clicked item under query 𝑞𝑘 . The number of the clicked items
corresponding to each query can be different and at minimum 0.

Based on the above notations, we define the task of sequential
recommendation with search data. Given the contextual sequences
𝑆𝑢𝑖 , 𝑆𝑢𝑞 and 𝑆𝑢𝑐 of a user’s recommendation and search histories, the
sequential recommendation with search data task aims to predict
the next item that the user is likely to interact with at timestamp 𝑡+1,
i.e., 𝑃 (𝑖𝑡+1 | 𝑆𝑢𝑖 , 𝑆𝑢𝑞 , 𝑆𝑢𝑐 ). Note that it differs from the conventional
sequential recommendation task, which predicts 𝑃 (𝑖𝑡+1 | 𝑆𝑢𝑖 ).

4 OUR APPROACH: SESREC
In this section, we elaborate on the proposed SESRec.

4.1 Overview
The overview of SESRec is illustrated in Figure 2. First, we embed
the sparse input data into dense representations. Then, we leverage
the transformer layers [23] to learn the contextual representations
of historical behaviors. For disentangling interests, we separate
two behavior sequences into sub-sequences that respectively repre-
sent similar and dissimilar interests. And we aggregate behavior
sequences into vectors to represent user interests w.r.t. the candi-
date item. Finally, we concatenate all the vectors together to get the
overall representation vector, which is followed by an Multilayer
Perceptron (MLP) to generate the ultimate prediction.

Specifically, we design several components to disentangle user
interests with self-supervision and aggregate user interests from all
aspects. These designed components are shown in Figure 2 within
colored boxes. We align query and item representations into the
same semantic space with the InfoNCE loss. Then we separate S&R
behavior sequences into sub-sequences respectively. We leverage
self-supervision signals to guide the separation based on the triplet
loss. Last, we introduce an interest extraction module that aggre-
gates the original sequences and constructed sub-sequences to form
aggregated, similar and dissimilar interest representations of both
behaviors.

4.2 Encoding Sequential Behaviors
4.2.1 Embedding Layer. We maintain separate look-up tables for
IDs and attributes of users, items, and queries. As for users and
items, given a user (an item), we concatenate his (its) ID and at-
tribute embeddings to form a user (item) representation: e𝑢 =

eID𝑢 ∥e𝑎1 ∥ · · · ∥e𝑎𝑛 (e𝑖 = eID𝑖 ∥e𝑏1 ∥ · · · ∥e𝑏𝑚 ), where ∥ denotes con-
catenation, 𝑎1, . . . , 𝑎𝑛 and 𝑏1, . . . , 𝑏𝑚 denote the attributes of users
and items, respectively. As for queries, each query 𝑞 contains sev-
eral terms (𝑤1,𝑤2, . . . ,𝑤 |𝑞 |). We obtain the query embedding by
concatenating query ID embedding and the mean pooling of term
embeddings: e𝑞 = eID𝑞 ∥MEAN(e𝑤1 , e𝑤2 , . . . , e𝑤|𝑞 | ), where eID𝑞 is
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ê@
5
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Figure 2: The architecture of SESRec. From left to right is the process of modeling S&R histories. On the far right is the process
of ultimate prediction. The three colored modules with dashed lines conduct interest disentanglement.

the query ID embedding, e𝑤𝑘 is the ID embedding of the 𝑘-th term,
and MEAN() denotes mean pooling. Many queries occur repeatedly
in search data, so query ID is informative. And most queries consist
of less than five terms and lack strong sequential patterns. So the
average pooling operation, following the bag-of-words paradigm,
is effective and efficient.

For a user 𝑢, given the context 𝑆𝑢𝑖 , 𝑆
𝑢
𝑞 , and 𝑆𝑢𝑐 , we obtain em-

bedding matrices of historically interacted items, issued queries,
and clicked items, denoted as E𝑖 = [e𝑖1, e𝑖2, . . . , e𝑖𝑇𝑟 ]

⊺ ∈ R𝑇𝑟×𝑑𝑖 , E𝑞 =

[e𝑞1 , e
𝑞
2 , . . . , e

𝑞
𝑇𝑠
]⊺ ∈ R𝑇𝑠×𝑑𝑞 , and E𝑐 = [e𝑖1, e𝑖2, . . . , e𝑖|𝑆𝑢𝑐 |]⊺ ∈ R |𝑆𝑢𝑐 |×𝑑𝑖 ,

respectively, where 𝑑𝑖 and 𝑑𝑞 are dimensions of item and query
embeddings. Besides, we incorporate learnable position encoding
matrices to model the sequential order of behaviors, denoted as
P𝑠 ∈ R𝑇𝑠×𝑑 and P𝑟 ∈ R𝑇𝑟×𝑑 , respectively, where 𝑑 is dimension. As
for search behaviors, we also adopt type embedding for queries of
different sources, e.g., user-typed queries, user-specific historical
queries, and queries related to the current item. The search type
embedding matrix is denoted by M𝑠 ∈ R𝑘×𝑑 , where 𝑘 is the total
number of all possible search sources.

Because it is challenging to model user interests with query
and item representations in unaligned vector spaces, we transform
the item and query embeddings into latent vector spaces with the
same dimension. The transformed embedding matrices of interacted
items, issued queries, and clicked items are calculated as:

Ê𝑖 = E𝑖W𝑖 , Ê𝑞 = E𝑞W𝑞, Ê𝑐 = E𝑐W𝑖 , (1)

where Ê𝑖 ∈ R𝑇𝑟×𝑑 , Ê𝑞 ∈ R𝑇𝑠×𝑑 and Ê𝑐 ∈ R |𝑆𝑢𝑐 |×𝑑 are transformed
matrices, W𝑖 ∈ R𝑑𝑖×𝑑 and W𝑞 ∈ R𝑑𝑞×𝑑 are trainable parameters
for linear projection.

4.2.2 Bias Encoding. We incorporate position encodings for S&R
behaviors to make use of the order relations of the sequence. The
recommendation sequence matrix E𝑟 ∈ R𝑇𝑟×𝑑 is obtained by sum-
ming the interacted item matrix and the position matrix:

E𝑟 = Ê𝑖 + P𝑟 (2)

As for search behaviors, we additionally introduce type encod-
ings along with position encodings. The search sequence matrix
E𝑠 ∈ R𝑇𝑠×𝑑 is defined as:

E𝑠 = Ê𝑞 + Ẽ𝑐 + P𝑠 + M̂𝑠 (3)

where Ẽ𝑐 ∈ R𝑇𝑠×𝑑 is the matrix of the mean pooling of all clicked
items’ matrices under each query, and M̂𝑠 ∈ R𝑇𝑠×𝑑 is the type
matrix.

To obtain Ẽ𝑐 , we first group clicked items Ê𝑐 by the issued queries,
i.e., several items clicked by the same query are divided into the
same group. Then we apply a mean pooling operation on each
group to get the matrix Ẽ𝑐 ∈ R𝑇𝑠×𝑑 .

The type matrix M̂𝑠 is defined as a sequence of type embeddings
for each query in the search history, where each element m𝑗 ∈ R𝑑 in
M̂𝑠 is obtained from the look-up table M𝑠 . We add the type matrix to
model the correlation between search behaviors and search sources.

Considering clicked items contain identical users’ interests as
their corresponding queries, we fuse the issued query sequence and
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clicked item sequence to form a unified search sequence by adding
them up in Equation (3).

4.2.3 Transformer Layer. To learn an enhanced contextual repre-
sentation for each element in a given sequence, we use the trans-
former layer [23] to capture the relations between each element
with other elements in the S&R sequences. The transformer layer
generally consists of two sub-layers, i.e., a multi-head self-attention
layer and a point-wise feed-forward network. We apply the trans-
former layers for S&R sequences, respectively:

F𝑠 = MHA𝑠 (E𝑠 ), F𝑟 = MHA𝑟 (E𝑟 ), (4)
H𝑠 = FFN𝑠 (F𝑠 ), H𝑟 = FFN𝑟 (F𝑟 ), (5)

where H𝑠 ∈ R𝑇𝑠×𝑑 and H𝑟 ∈ R𝑇𝑟×𝑑 denote enhanced matrices of
S&R sequences respectively, the multi-head self-attention is ab-
breviated to “MHA”, and the two-layer feed-forward network is
abbreviated to “FFN”.

4.3 Self-supervised Interest Disentanglement
As mentioned before, user interests between S&R behaviors have
overlaps and differences. Since there does not exist any annotated
label of user interests, we leverage contrastive learning techniques
to disentangle the S&R behaviors with self-supervision and then
extract user interests from three aspects, i.e., the aggregated behav-
iors, the two separated behaviors containing similar and dissimilar
interests.

4.3.1 Query-item Alignment. It is challenging for the behavior
encoders to jointly learn user interests from S&R behaviors that
have unaligned embeddings. Also, it is unfeasible to disentangle
user interests from S&R behaviors without knowing the semantic
similarities between queries and items. Thus, we align the embed-
dings of queries and items as follows before further extracting user
interests from them.

Because items and queries have different forms of features, their
original embeddings are unaligned in different vector spaces. As
shown in Equation (1), we first transform the item and query em-
beddings into a latent vector space. Then, inspired by works [10, 16]
for multi-model learning, we leverage a contrastive learning loss
to teach the model which queries and items are similar or differ-
ent. Given issued query and clicked item sequence matrices Ê𝑞 =

[ê𝑞1 , ê
𝑞
2 , . . . , ê

𝑞
𝑇𝑠
]⊺ ∈ R𝑇𝑠×𝑑 and Ê𝑐 = [ê𝑖1, ê𝑖2, . . . , ê𝑖|𝑆𝑢𝑐 |]⊺ ∈ R |𝑆𝑢𝑐 |×𝑑 ,

we minimize the sum of two InfoNCE [21] losses: one for query-to-
item alignment

L𝑢,𝑡
Aq2i

= −
𝑇𝑠∑︁
𝑗=1

|𝑞 𝑗 |∑︁
𝑘=1

log
exp(𝑠 (ê𝑞𝑗 , ê𝑖𝑘 )/𝜏)∑

ℎ∈Ineg exp(𝑠 (ê𝑞𝑗 , ê𝑖ℎ)/𝜏)
, (6)

and the other for item-to-query alignment

L𝑢,𝑡
Ai2q

= −
𝑇𝑠∑︁
𝑗=1

|𝑞 𝑗 |∑︁
𝑘=1

log
exp(𝑠 (ê𝑞𝑗 , ê𝑖𝑘 )/𝜏)∑

𝑓 ∈Qneg exp(𝑠 (ê𝑞
𝑓
, ê𝑖

𝑘
)/𝜏) , (7)

where 𝜏 is a learnable temperature parameter, |𝑞 𝑗 | denotes the
number of clicked items of query𝑞 𝑗 which satisfies

∑𝑇𝑠
𝑗=1 |𝑞 𝑗 | = |𝑆𝑢𝑐 |,

Ineg and Qneg denote the sets of randomly sampled items and
queries respectively, and 𝑠 is a similarity function. The function
𝑠 is defined as: 𝑠 (p, q) = tanh(p⊺WAq), where tanh denotes the

activation function and the introduction of WA ∈ R𝑑×𝑑 ensures
the query-item correlation estimation can be different with the
criterion used in the ultimate prediction. Finally, the query-item
alignment loss is obtained by:

L𝑢,𝑡
ali =

1
2 (L

𝑢,𝑡
Aq2i

+ L𝑢,𝑡
Ai2q

), (8)

4.3.2 Interest Contrast. To conduct interest disentanglement, we
employ a contrastive learning mechanism to distinguish similar
and dissimilar interests between the contextual representations of
behaviors H𝑠 and H𝑟 .

After the transformer layers, given the matrices H𝑠 and H𝑟 , we
construct a co-dependant representation matrix of both behaviors,
which generates the similarity scores of two sequences. Inspired by
recent works [15, 25] for question answering, we leverage the co-
attention technique. We first compute an affinity matrix A ∈ R𝑇𝑠×𝑇𝑟
as follows:

A = tanh(H𝑠W𝑙 (H𝑟 )T), (9)
where W𝑙 ∈ R𝑑×𝑑 is a learnable weight matrix. The affinity matrix
A contains affinity scores corresponding to all pairs of recommen-
dation behaviors and search behaviors. We multiply the affinity
matrix A and the search matrix H𝑠 (or the recommendation matrix
H𝑟 ), and then normalize the multiplication results to get similarity
scores for each element in one sequence across all the elements in
the other sequence:

a𝑠 = softmax(W𝑟HT
𝑟 AT), a𝑟 = softmax(W𝑠HT

𝑠 A), (10)

where a𝑟 ∈ R𝑇𝑟 and a𝑠 ∈ R𝑇𝑠 are similarity scores, W𝑟 ,W𝑠 ∈ R1×𝑑
are trainable parameters for linear projection.

Next, we exploit a triplet loss to self-supervise the disentangle-
ment of similar and dissimilar interests between two behaviors.
Given similarity scores a𝑟 and a𝑠 , elements in H𝑠 and H𝑟 with
higher scores can be interpreted as representative ones for simi-
lar interests, while elements with lower scores can be interpreted
as representative ones for dissimilar interests. Let P (N ) denote
the set of elements containing similar (dissimilar) interests of S&R
behaviors. As such, we perform hard selection to separate S&R
sequences into two subsequences as follows:

P𝑠 = {h𝑠𝑗 | a𝑠𝑗 > 𝛾𝑠 }, N𝑠 = {h𝑠𝑗 | a𝑠𝑗 ≤ 𝛾𝑠 }, (11)

P𝑟 = {h𝑟𝑗 | a𝑟𝑗 > 𝛾𝑟 }, N𝑟 = {h𝑟𝑗 | a𝑟𝑗 ≤ 𝛾𝑟 }, (12)

where h𝑠𝑗 , h
𝑟
𝑗 ∈ R𝑑 are the 𝑗-th vectors in matrices H𝑠 and H𝑟 ,

a𝑠𝑗 and a𝑟𝑗 are similarity scores for h𝑠𝑗 and h𝑟𝑗 respectively, 𝛾𝑟 and
𝛾𝑠 are selection thresholds. Since a𝑠 and a𝑟 are normalized after
softmax, we empirically set the thresholds 𝛾𝑟 and 𝛾𝑠 to the uniform
values 1

𝑇𝑟
and 1

𝑇𝑠
. The positives with similarity scores larger than

the thresholds can be interpreted as similar interests with above-
average similarities. The negatives, as the counterparts of positives,
are with below-average similarities.

Then we design the anchors, positives and negatives of the triplet
loss. To guide learning the disentanglement, we utilize the original
sequences H𝑟 and H𝑠 to form anchors, and leverage the separated
subsequences P𝑠 ,P𝑟 and N𝑠 ,N𝑟 to serve as positives and negatives.
The anchors, positives, and negatives can be calculated as:

i𝐴𝑠 =

𝑇𝑠∑︁
𝑗=1

a𝑠𝑗h
𝑠
𝑗 , i𝑃𝑠 = MEAN(P𝑠 ), i𝑁𝑠 = MEAN(N𝑠 ), (13)
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i𝐴𝑟 =

𝑇𝑟∑︁
𝑗=1

a𝑟𝑗h
𝑟
𝑗 , i𝑃𝑟 = MEAN(P𝑟 ), i𝑁𝑟 = MEAN(N𝑟 ), (14)

where i𝐴𝑠 , 𝑖𝐴𝑟 ∈ R𝑑 are anchors, i𝑃𝑠 , i𝑃𝑟 ∈ R𝑑 are positives, i𝑁𝑠 , i𝑁𝑟 ∈
R𝑑 are negatives. Then we perform contrastive learning, which
requires the anchors to be similar with positives, and to be differ-
ent from negatives. Based on these vectors, We implement triplet
losses for S&R behaviors, respectively. Formally, the loss function
is computed as follows:

Ltri (𝑎, 𝑝, 𝑛) = max{𝑑 (𝑎, 𝑝) − 𝑑 (𝑎, 𝑛) +𝑚, 0}, (15)

where 𝑑 denotes distance function which is implemented as eu-
clidean distance, 𝑚 denotes a positive margin value, 𝑎, 𝑝 and 𝑛
denote anchors, positives and negatives, respectively. Finally, the
interest contrast loss can be obtained by summing up two triplet
losses, one for recommendation behaviors, the other for search
behaviors:

L𝑢,𝑡
con = Ltri (i𝐴𝑟 , i𝑃𝑟 , i𝑁𝑟 ) + Ltri (i𝐴𝑠 , i𝑃𝑠 , i𝑁𝑠 ), (16)

Remark. In most cases, users use S&R services at different fre-
quencies. The lengths and update frequencies of two behaviors are
different since they are collected from different services. That is
why we employ triplet losses for the two behaviors, respectively.
We update the model parameters of each behavior with its own
constructed interest representations, which ensures the consistency
of model training. Besides, considering that similar and dissimilar
interests usually overlap with each other to some extent, there is no
clear distinction between them. The triplet loss performs pairwise
comparisons, which reduces the differences between similar things
and increases the differences between different things. That is why
we use the triplet loss instead of other contrastive loss functions,
e.g., InfoNCE [21], which imposes too strong punishment on the
similarity between positives and negatives.

4.3.3 Multi-interest Extraction. Based on the original behaviors
and separated behaviors containing similar and dissimilar interests,
we extract user interests from three aspects, i.e., aggregated, sim-
ilar, and dissimilar interests. Given a candidate item 𝑣 , we utilize
an attention mechanism to reallocate the user interests w.r.t. the
candidate item. For recommendation behaviors, interests can be
extracted from three aspects as follows:

uall
𝑟 =

𝑇𝑟∑︁
𝑗=1

𝑎all
𝑗 h𝑟𝑗 , 𝑎all

𝑗 =
exp((h𝑟𝑗 )TW𝑑e𝑖𝑣)∑𝑇𝑟

𝑘=1 exp((h𝑟
𝑘
)TW𝑑e𝑖𝑣)

, (17)

usim
𝑟 =

∑︁
h𝑟
𝑗
∈P𝑟

𝑎sim
𝑗 h𝑟𝑗 , 𝑎sim

𝑗 =
exp((h𝑟𝑗 )TW𝑑e𝑖𝑣)∑

h𝑟
𝑘
∈P𝑟

exp((h𝑟
𝑘
)TW𝑑e𝑖𝑣)

, (18)

udiff
𝑟 =

∑︁
h𝑟
𝑗
∈N𝑟

𝑎diff
𝑗 h𝑟𝑗 , 𝑎diff

𝑗 =
exp((h𝑟𝑗 )TW𝑑e𝑖𝑣)∑

h𝑟
𝑘
∈N𝑟

exp((h𝑟
𝑘
)TW𝑑e𝑖𝑣)

, (19)

where uall
𝑟 , usim

𝑟 , udiff
𝑟 ∈ R𝑑 are representative vectors for aggre-

gated, similar, and dissimilar interests, W𝑑 is the trainable parame-
ters to model correlation between recommendation behaviors and

Table 1: Statistics of datasets used in this paper. ‘S’ and ‘R’
denote search and recommendation, respectively.

Dataset Users Items Queries Actions-S Actions-R
Kuaishou 35,721 822,832 398,924 922,531 11,381,172
Amazon 68,223 61,934 4,298 934,664 989,618

the candidate item. By concatenating these three vectors, we can
get the representation of recommendation interests:

u𝑟 = uall
𝑟 ∥usim

𝑟 ∥udiff
𝑟 , (20)

where u𝑟 ∈ R3𝑑 . Similarly, we can obtain the representation of
search interests in the same way, i.e., u𝑠 ∈ R3𝑑 .

4.4 Prediction and Model Training
4.4.1 Prediction. To predict the interaction, we utilize the widely
adopted two-layer MLP [33, 34] to model feature interaction and
make predictions. Given a user 𝑢 and an item 𝑣 at timestamp 𝑡 + 1,
the prediction score can be calculated as follows:

𝑦𝑡+1
𝑢,𝑣 = MLP(u𝑟 ∥u𝑠 ∥e𝑖𝑣 ∥e𝑢𝑢 ), (21)

where 𝑦𝑡+1
𝑢,𝑣 denotes the prediction score, e𝑖𝑣 and e𝑢𝑢 are embeddings

of the item 𝑣 and the user 𝑢, respectively.

4.4.2 Model Training. Following the existing works’ settings [33,
34], we adopt the negative log-likelihood function to supervise the
final prediction:

L𝑢,𝑡
rec = − 1

𝑁

∑︁
𝑣∈O

𝑦𝑡+1
𝑢,𝑣 log(𝑦𝑡+1

𝑢,𝑣 ) + (1 − 𝑦𝑡+1
𝑢,𝑣 ) log(1 − 𝑦𝑡+1

𝑢,𝑣 ), (22)

where O is the set composed of training pairs of one positive item
and𝑁−1 negative items. In order to apply additional self-supervised
signals about query-item alignment and interest disentanglement,
we train our model in an end-to-end manner under a multi-task
learning schema. The overall loss function is formulated as:

L =

|U |∑︁
𝑢=1

𝑇𝑢∑︁
𝑡=1

(L𝑢,𝑡
rec + 𝛼L𝑢,𝑡

ali + 𝛽L𝑢,𝑡
con) + _ | |Θ| |2 . (23)

where |U| is the number of users, 𝑇𝑢 denotes the timestamp of
the user 𝑢’s latest interaction, 𝛼 and 𝛽 are hyper-parameters for
additional tasks, and _ | |Θ| |2 denotes the 𝐿2 regularization to avoid
over-fitting.

5 EXPERIMENT
5.1 Experimental Setup
5.1.1 Dataset. SESRec needs user S&R behavior logs simultane-
ously. In the following experiments, we evaluated models on two
datasets: one is collected from logs of a short-video app, and the
other is based on a widely used public Amazon dataset [4, 14].
Table 1 reports statistics of both datasets.

Kuaishou Dataset: This dataset is constructed based on be-
havior logs of 35,721 users who elected to use both S&R services
on the short-video app named Kuaishou over one month in 2022.
The historical S&R behaviors have been recorded. For dataset pre-
processing, following the common practice in [8, 19, 36], we group
interaction records by users, sort them by timestamp ascendingly
and filter unpopular items and users with fewer than five interaction
records.
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Table 2: Overall performance comparisons on both datasets. The best and the second-best performance methods are denoted
in bold and underlined fonts respectively. * means improvements over the second-best methods are significant (p-value < 0.01).

Dataset Kuaishou Amazon (Kindle Store)
Category Method NDCG@5 NDCG@10 HIT@1 HIT@5 HIT@10 MRR NDCG@5 NDCG@10 HIT@1 HIT@5 HIT@10 MRR

Sequential

STAMP 0.2544 0.2981 0.1413 0.3616 0.4970 0.2569 0.2612 0.3103 0.1336 0.3833 0.5352 0.2608
DIN 0.2969 0.3418 0.1792 0.4092 0.5484 0.2976 0.2999 0.3495 0.1591 0.4340 0.5871 0.2942

GRU4Rec 0.3247 0.3688 0.1890 0.4517 0.5881 0.3180 0.3099 0.3662 0.1479 0.4648 0.6388 0.2993
SASRec 0.3252 0.3693 0.1904 0.4501 0.5864 0.3187 0.3822 0.4312 0.2187 0.5324 0.6838 0.3675
DIEN 0.3217 0.3704 0.1914 0.4463 0.5969 0.3192 0.3336 0.3803 0.1871 0.4706 0.6150 0.3246

FMLP-Rec 0.3354 0.3787 0.1953 0.4651 0.5988 0.3270 0.4073 0.4550 0.2349 0.5651 0.7121 0.3883

Search-aware

NRHUB 0.2964 0.3431 0.1665 0.4199 0.5647 0.2933 0.2744 0.3265 0.1329 0.4099 0.5708 0.2704
JSR 0.3015 0.3513 0.1738 0.4241 0.5783 0.3004 0.3221 0.3722 0.2057 0.4386 0.5937 0.3224

IV4REC 0.3114 0.3591 0.1877 0.4282 0.5761 0.3116 0.3473 0.3960 0.1853 0.4985 0.6258 0.3331
Query-SeqRec 0.3117 0.3581 0.1740 0.4412 0.5844 0.3055 0.3692 0.4142 0.2187 0.5083 0.6470 0.3572

SRJGraph 0.3297 0.3762 0.2046 0.4479 0.5917 0.3277 0.3670 0.4043 0.2760 0.4898 0.6242 0.3708
SESRec 0.3541* 0.4054* 0.2173* 0.4848* 0.6436* 0.3490* 0.4224* 0.4663* 0.2580 0.5723* 0.7074 0.4046*

Amazon Dataset3: To the best of our knowledge, there doesn’t
exist a public dataset that contains both S&R behaviors. Following a
standard approach for product search [1], we enhance a recommen-
dation dataset, the Amazon dataset [4, 14], by generating search
behaviors. We adopt the “Kindle Store” subset of the five-core Ama-
zon dataset that covers data in which all users and items have at
least five reviews. The detailed generation process of search be-
haviors4 can be found in [1]. Please note that this automatically
constructed search dataset has been widely used by product search
community [1, 3, 22, 29]. Following [3], we randomly select one
query for items with multiple constructed queries to model the
sequential behaviors.

Following previous works [8, 19, 36], we adopt the leave-one-
out strategy to split both datasets. For each user, we hold out the
most recent action for testing, the second most recent action for
validation, and all the remaining actions for training. Besides, to
ensure data quality, we filter interactions in which the user doesn’t
have historical S&R history simultaneously.

5.1.2 Evaluation Metrics. Following [19, 36], we employ several
widely used ranking metrics, including Hit Ratio (HIT), Normalized
Discounted Cumulative Gain (NDCG), and Mean Reciprocal Rank
(MRR). We report HIT with 𝑘 = 1, 5, 10 and NDCG with 𝑘 = 5, 10.
We pair the ground-truth item with 99 randomly sampled items
that the user has never interacted with. For all metrics, we calculate
them according to the ranking of items and report average results.

5.1.3 Baseline Models. In this work, we compare SESRec with
state-of-the-art methods.

For sequential recommendation methods without leveraging
search data, we include following sequential models: (1) STAMP [12]:
It captures users’ general interests from the long-term memory and
short-term memory; (2) DIN [34]: It uses an attention mechanism
to model user interest from historical behaviors w.r.t. a target item;
(3) GRU4Rec [6]: It is the first work to apply RNN to session-
based recommendation with a ranking based loss; (4) SASRec [8]:
It is a unidirectional transformer-based sequential model, which
uses self-attention to capture sequential preferences; (5) DIEN [33]:
It enhances DIN by combining attention with GRU units to take

3The Amazon review dataset can be found at http://jmcauley.ucsd.edu/data/amazon/.
4The constructed search data is available at https://github.com/QingyaoAi/Amazon-
Product-Search-Datasets.

interests evolution into consideration; (6) FMLPRec [36]: It is an
all-MLP model with learnable filters which can adaptively attenuate
the noise information in historical sequences.

For methods using search data, we include following search-
aware models: (7) NRHUB [24]: It is a news recommendation
model leveraging heterogeneous user behaviors; (8) JSR [28]: It is
a general framework which optimizes a joint loss. We implement
it following [17] to ensure a fair comparison with other sequen-
tial models; (9) IV4REC [17]: It is a model-agnostic framework
exploiting search queries as instrumental variables to enhance the
recommendation model. Following the original paper, we apply this
framework over DIN; (10) Query-SeqRec [5]: It is a query-aware
sequential model which incorporates queries into user behaviors
using a transformer-based model. (11) SRJGraph [31]: It is a GNN-
based model which exploits a heterogeneous graph to model the
user-item and user-query-item interactions for S&R.

5.1.4 Implementation Details. All hyper-parameters of baselines
are searched following suggestions from the original papers. For all
models, the maximum sequence length of recommendation (search)
history is set to 150 (25) on the Kuaishou dataset and 15 (15) on
the Amazon dataset. 𝑑𝑖 , 𝑑𝑞 and 𝑑 are set as 48, 64 and 48 (32, 32,
and 32) on the Kuaishou dataset (Amazon dataset). For the fair
competition, we deploy the same setting of item embeddings on all
models. For query embeddings, we also randomly initialize term
embeddings for all search-aware models. The batch size is set as 256.
The hyper-parameters 𝛼 and 𝛽 are set as 0.1 and 0.001, respectively.
The margin 𝑚 is set as 0.1. We use the Adam [9] with a learning
rate of 0.001, and adopt early-stopped training to avoid over-fitting.
More details can be found in the open source codes5.

5.2 Overall Performance
Table 2 reports the recommendation results on the two datasets.
We have the following observations:
• Search-aware models do not always bring performance gains.
SRJGraph is the SOTA approach that mines both S&R behaviors.
However, the SOTA sequential model FMLP-Rec can obtain com-
patible or even better performance than SRJGraph. Besides, Query-
SeqRec shares a similar architecture as SASRec but achieves slightly
poorer performance than SASRec. These phenomenons indicate

5https://github.com/Ethan00Si/SESREC-SIGIR-2023

http://jmcauley.ucsd.edu/data/amazon/
https://github.com/QingyaoAi/Amazon-Product-Search-Datasets
https://github.com/QingyaoAi/Amazon-Product-Search-Datasets
https://github.com/Ethan00Si/SESREC-SIGIR-2023
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Table 3: Ablation studies by progressively adding proposed
modules to the base model. MIE is short for the multi-
interest extraction module.

Model N@5 N@10 H@1 H@5 H@10 MRR

Base 0.3394 0.3770 0.2027 0.4618 0.6094 0.3294
+L𝑢,𝑡

ali 0.3464 0.3982 0.2106 0.4762 0.6308 0.3421
+L𝑢,𝑡

con 0.3507 0.4021 0.2139 0.4812 0.6406 0.3459
+MIE 0.3541 0.4054 0.2173 0.4848 0.6436 0.3490

that blindly incorporating S&R histories may be insufficient to cap-
ture users’ diverse interests because users’ interests in essence are
entangled.
• Compared to baseline models, SESRec achieves the best perfor-
mance on both datasets in most cases, significantly outperforming
the SOTA sequential and search-aware methods FMLP-Rec and
SRJGraph by a large margin (paired t-test at 𝑝-value < 0.01). The
relative improvements over conventional sequential models reveal
that leveraging search behaviors can boost recommendation models.
Furthermore, the substantial performance gains over search-aware
models validate the effectiveness of interest disentanglement in
S&R behaviors.
• Comparing SESRec on two datasets, SESRec achieves fewer rela-
tive improvements on the Amazon dataset. Considering that search
data of the Amazon dataset was automatically constructed, many
items share the same queries, and the number of queries is sparse
compared with the number of items, as shown in Table 1. Thus, the
query-item alignment and interest contrast modules play a minor
role in boosting recommendation performance on this dataset.

5.3 Detailed Empirical Analysis
In this section, we conducted more detailed experiments on the
real-world Kuaishou dataset, providing in-depth analyses of how
and why SESRec achieved state-of-the-art performance.

5.3.1 Ablation Study. SESRec consists of several key components,
including alignment for queries and items, disentanglement for user
S&R interests with self-supervised signals, and the multi-interest
extraction module. To investigate how different components affect
the performance of SESRec, we conducted ablation studies by pro-
gressively adding three components to the base model. We added
these modules one by one because each module depends on previ-
ous modules. The base model solely processes S&R behaviors with
transformer layers and the interest extraction module of aggregated
interests. Table 3 shows the results on the Kuaishou dataset. Next,
we give a detailed discussion about each component:
• L𝑢,𝑡

ali : denotes the loss function of query-item alignment, which
guarantees that model captures the correlation between queries
and items. We observed that adding L𝑢,𝑡

ali leads to consistent per-
formance gain. The results demonstrate that understanding the in-
teractions between queries and items is beneficial to jointly model
S&R behaviors.
• L𝑢,𝑡

con: refers to the loss function of interest contrast, which is
designed to disentangle similar and dissimilar interests between
S&R behaviors. The interest disentanglement leads to performance
improvement, which indicates the necessity of disentanglement.
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Figure 3: Visualization of similarity between similar and dis-
similar interests in S&R behaviors for all users based on a
histogram. We use the JS divergence of item category dis-
tributions to estimate similarities between S&R behaviors.
Similar interests are more similar than dissimilar interests
with smaller values of JS divergence.

We attribute the improvement to the fact that L𝑢,𝑡
con helps the model

capture more accurate representations of user interests.
• MIE: is short for the multi-interest extraction module, which is de-
signed to extract interests from three perspectives, i.e., aggregated,
similar, and dissimilar interests. We found that MIE contributes
to the final prediction, validating the importance of MIE. Though
L𝑢,𝑡

con has distinguished interests into similar and dissimilar ones,
the model cannot explicitly leverage similar or dissimilar interests
for prediction without MIE.

5.3.2 Analysis of Disentangled Interests. The core operation of in-
terest disentanglement is the separation of similar and dissimilar
interests. To illustrate whether the interests are disentangled, we
visualize and interpret the similarity between constructed sets of
similar and dissimilar interests in Figure 3. Behaviors P𝑠 ,P𝑟 con-
taining similar interests and N𝑠 ,N𝑟 containing dissimilar interests
are separated in Equation (11) and (12). For each user, we calculated
the Jensen–Shannon (JS) divergence [11] between sets with similar
interests, i.e., 𝐷 𝐽 𝑆 (P𝑠 ∥P𝑟 ), which is colored in red in Figure 3. The
same calculation also was done for sets with dissimilar interests,
i.e., 𝐷 𝐽 𝑆 (N𝑠 ∥N𝑟 ), which is colored in blue in Figure 3. As discussed
in section 1, we can use the categories of items 𝑆𝑢𝑖 (interacted in
recommendation history) and 𝑆𝑢𝑐 (clicked in search history) to es-
timate the similarities between two behaviors. The calculation of
JS divergence is based on the distributions of item categories cor-
responding to P𝑠 ,P𝑟 and N𝑠 ,N𝑟 for each user. Figure 3 illustrates
the results for all users. We observed that similar interests tend
to have smaller values of JS divergence than dissimilar interests,
where red data has more counts smaller than 0.6 compared with
blue data. This phenomenon indicates P𝑠 and P𝑟 are more similar
than N𝑠 and N𝑟 , verifying the capability of SESRec to disentangle
user interests.

5.3.3 Analysis of 𝛾𝑠 , 𝛾𝑟 in Interest Disentanglement. The separation
of similar and dissimilar interests depends on the positive/negative
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Table 4: The analysis of the positive/negative selection
thresholds 𝛾𝑟 , 𝛾𝑠 in interest disentanglement, as defined in
Equation (11) and (12).

𝛾𝑟 , 𝛾𝑠 N@5 N@10 H@1 H@5 H@10 MRR

1/16 0.3429 0.3927 0.2125 0.4681 0.6224 0.3429
1/8 0.3449 0.3940 0.2148 0.4691 0.6211 0.3415

Median 0.3510 0.4035 0.2135 0.4828 0.6453 0.3462
Mean 0.3541 0.4054 0.2173 0.4848 0.6436 0.3490

behaviors selection, as defined in Equation (11) and (12). We investi-
gated the impacts of different positive/negative selection thresholds
𝛾𝑟 , 𝛾𝑠 . In practice, we utilize an adaptive way, i.e., setting thresholds
as mean values (𝛾𝑟 = 1

𝑇𝑟
, 𝛾𝑠 = 1

𝑇𝑟
), to choose the positives and

negatives. To show how 𝛾𝑟 , 𝛾𝑠 affect the performance of SESRec, we
conducted experiments where 𝛾𝑟 , 𝛾𝑠 are set as constants, e.g., 1

8 and
1
16 , and we also investigated another adaptive way that sets 𝛾𝑟 , 𝛾𝑠
as the median values of given similarity scores. Table 4 presents
the results with different settings of 𝛾𝑟 , 𝛾𝑠 . We can observe that
constant settings (𝛾𝑟 , 𝛾𝑠 = 1

8 or 1
16 ) yield inferior performances

compared with the two adaptive strategies. We postulate that the
constant settings can not handle behaviors with different lengths
consistently because longer behaviors lead to smaller mean values
of scores normalized by softmax. We also find that the adopted
mean value strategy achieves better performance than the median
value strategy in most cases. The median value strategy separates
behavior sequences into two parts of the same length. However,
the similar and dissimilar parts of users’ behaviors do not satisfy
this distribution in most cases. That is why the adopted mean value
strategy achieves the best performance.

5.3.4 Effect of Query-item Alignment. We conducted experiments
to explore how the query-item alignment facilitates representation
learning and whether SESRec understands the similarity of queries
and items. Toward this end, we tested the relevance between queries
and their clicked items. For search behaviors, we split queries and
their clicked items into pairs, where each pair consists of a query
and its corresponding item. And we obtained their embeddings
learned by SESRec and a variation of SESRec, which removes the
query-item alignment loss L𝑢,𝑡

ali . We calculated the cosine similarity
of each query-item pair based on the embeddings and plotted the
distribution of similarity scores in Figure 4. From the results, we can
observe that embeddings learned by SESRec have smaller similarity
scores than those learned without L𝑢,𝑡

ali . These results indicate that
the query-item alignment module ensures that queries are closed
to their corresponding items in correlation.

5.3.5 Impact of Hyper-parameters. Since we design two additional
tasks, hyper-parameters 𝛼 and 𝛽 are introduced to balance the
objectives in the final loss function, as defined in Equation (23). To
investigate the impacts of these hyper-parameters, we conducted
experiments with varying 𝛼 and 𝛽 respectively. When varying one
parameter, the other is set as a constant, where 1e-1 for 𝛼 and 1e-3
for 𝛽 . From the results in Figure 5, we found that the performance
peaks when 𝛼 is 1e-1 and 𝛽 is 1e-3. With a further increase of hyper-
parameters, the recommendation performances become worse. We

SESRec w/o u, t
ali SESRec
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Figure 4: Distribution of cosine similarity between repre-
sentations of queries and corresponding items based on
box plots. Rectangles denote mean values. With query-item
alignment loss L𝑢,𝑡

ali , embeddings of query-item pairs are
more similar with higher cosine values.
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Figure 5: Effects of hyper-parameters 𝛼 and 𝛽 in terms of
NDCG@10 and MRR.

attribute it to the fact that the recommendation prediction task
becomes less important with larger 𝛼 and 𝛽 , which verifies the
necessity of hyper-parameters to balance different tasks in the
multi-task learning schema.

6 CONCLUSION
In this paper, we propose to learn disentangled search represen-
tation for recommendation with a search-enhanced framework,
namely SESRec. SESRec exploits the query-item interactions to
help the recommendation model to learn better representations
of queries and items. With the help of self-supervision, SESRec
disentangles the similar and dissimilar representations between
users’ search and recommendation behaviors to capture users’ inter-
ests from multiple aspects. Besides, SESRec provides an end-to-end
multi-task learning framework for estimating the parameters. Ex-
tensive experiments on industrial and public datasets demonstrate
that SESRec consistently outperforms state-of-the-art baselines.
Moreover, we empirically validate that SESRec successfully learn
the disentangled representations of user interests.
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